Data Modeling And Neural Networks

I have two new posts in my launching a data science project series.  The first one covers data modeling theory:

Wait, isn’t self-supervised learning just a subset of supervised learning?  Sure, but it’s pretty useful to look at on its own.  Here, we use heuristics to guesstimate labels and train the model based on those guesstimates.  For example, let’s say that we want to train a neural network or Markov chain generator to read the works of Shakespeare and generate beautiful prose for us.  The way the recursive model would work is to take what words have already been written and then predict the most likely next word or punctuation character.

We don’t have “labeled” data within the works of Shakespeare, though; instead, our training data’s “label” is the next word in the play or sonnet.  So we train our model based on the chains of words, treating the problem as interdependent rather than a bunch of independent words just hanging around.

Then, we implement a data model using a neural network:

At this point, I want to build the Keras model. I’m creating a build_model function in case I want to run this over and over. In a real-life scenario, I would perform various optimizations, do cross-validation, etc. In this scenario, however, I am just going to run one time against the full training data set, and then evaluate it against the test data set.

Inside the function, we start by declaring a Keras model. Then, I add three layers to the model. The first layer is a dense (fully-connected) layer which accepts the training data as inputs and uses the Rectified Linear Unit (ReLU) activation mechanism. This is a decent first guess for activation mechanisms. We then have a dropout layer, which reduces the risk of overfitting on the training data. Finally, I have a dense layer for my output, which will give me the salary.

I compile the model using the RMSProp optimizer. This is a good default optimizer for neural networks, although you might try AdagradAdam, or AdaMax as well. Our loss function is Mean Squared Error, which is good for dealing with finding the error in a regression. Finally, I’m interested in the Mean Absolute Error–that is, the dollar amount difference between our function’s prediction and the actual salary. The closer to $0 this is, the better.

Click through for those two posts, including seeing how close I get to a reasonable model with my neural network.

Related Posts

Inline Operators In R With wrapr

John Mount shows how to use inline operators in R with the wrapr package: The above code is assuming you have the wrapr package attached via already having run library('wrapr'). Notice we picked R-related operator names. We stayed away from overloading the + operator, as the arithmetic operators are somewhat special in how they dispatch in R. The goal wasn’t […]

Read More

Feature And Text Classification Using Naive Bayes In R

I wrap up my series on the Naive Bayes class of algorithms, finally writing some code along the way: Now we’re going to look at movie reviews and predict whether a movie review is a positive or a negative review based on its words. If you want to play along at home, grab the data set, […]

Read More

Categories

March 2018
MTWTFSS
« Feb Apr »
 1234
567891011
12131415161718
19202122232425
262728293031