XGBoost In R

Fisseha Berhane explains how to implement Extreme Gradient Boosting in R:

What makes it so popular are its speed and performance. It gives among the best performances in many machine learning applications. It is optimized gradient-boosting machine learning library. The core algorithm is parallelizable and hence it can use all the processing power of your machine and the machines in your cluster. In R, according to the package documentation, since the package can automatically do parallel computation on a single machine, it could be more than 10 times faster than existing gradient boosting packages.

xgboost shines when we have lots of training data where the features are numeric or a mixture of numeric and categorical fields. It is also important to note that xgboost is not the best algorithm out there when all the features are categorical or when the number of rows is less than the number of fields (columns).

xgboost is a nice complement to neural networks, as they tend to be great at different things.

Related Posts

Data Science And Data Engineering In HDP 3.0

Saumitra Buragohain, et al, show off some of the things added to the Hortonworks Data Platform for data scientists and data engineers: We leverage the power of HDP 3.0 from efficient storage (erasure coding), GPU pooling to containerized TensorFlow and Zeppelin to enable this use case. We will the save the details for a different […]

Read More

Using wrapr For A Consistent Pipe With ggplot2

John Mount shows how you can use the wrapr pipe to perform data processing and building a ggplot2 visual: Now we can run a single pipeline that combines data processing steps and ggplot plot construction. data.frame(x = 1:20) %.>% mutate(., y = cos(3*x)) %.>% ggplot(., aes(x = x, y = y)) %.>% geom_point() %.>% geom_line() %.>% ggtitle("piped ggplot2") Check […]

Read More


March 2018
« Feb Apr »