Tidy Data Is Normalized Data

I emphasize the link between a tidy dataframe and a normalized data structure:

The kicker, as Wickham describes on pages 4-5, is that normalization is a critical part of tidying data.  Specifically, Wickham argues that tidy data should achieve third normal form.

Now, in practice, Wickham argues, we tend to need to denormalize data because analytics tools prefer having everything connected together, but the way we denormalize still retains a fairly normal structure:  we still treat observations and variables like we would in a normalized data structure, so we don’t try to pack multiple observations in the same row or multiple variables in the same column, reuse a column for multiple purposes, etc.

I had an inkling of this early on and figured I was onto something clever until I picked up Wickham’s vignette and read that yeah, that’s exactly the intent.

Related Posts

Using wrapr For A Consistent Pipe With ggplot2

John Mount shows how you can use the wrapr pipe to perform data processing and building a ggplot2 visual: Now we can run a single pipeline that combines data processing steps and ggplot plot construction. data.frame(x = 1:20) %.>% mutate(., y = cos(3*x)) %.>% ggplot(., aes(x = x, y = y)) %.>% geom_point() %.>% geom_line() %.>% ggtitle("piped ggplot2") Check […]

Read More

Using R To Hit Azure ML From Power BI

Leila Etaati shows how you can use R to hit an Azure ML endpoint to populate a data set in Power BI: You need to create a model in Azure ML Studio and create a web service for it. The traditional example in Predict a passenger on Titanic ship is going to survived or not? […]

Read More


February 2018
« Jan Mar »