The Basics Of PCA In R

Prashant Shekhar gives us an overview of Principal Component Analysis using R:

PCA changes the axis towards the direction of maximum variance and then takes projection on this new axis. The direction of maximum variance is represented by Principal Components (PC1). There are multiple principal components depending on the number of dimensions (features) in the dataset and they are orthogonal to each other. The maximum number of principal component is same as a number of dimension of data. For example, in the above figure, for two-dimension data, there will be max of two principal components (PC1 & PC2). The first principal component defines the most of the variance, followed by second principal component, third principal component and so on. Dimension reduction comes from the fact that it is possible to discard last few principal components as they will not capture much variance in the data.

PCA is a useful technique for reducing dimensionality and removing covariance.

Related Posts

Using DALEX To Explain Black-Box Models

Przemyslaw Biecek explains that there’s more than LIME for explaining black-box models: I’ve heard about a number of consulting companies, that decided to use simple linear model instead of a black box model with higher performance, because ,,client wants to understand factors that drive the prediction’’. And usually the discussion goes as following: ,,We have tried LIME […]

Read More

Comparing Keras In Python Versus R

Dmitry Kisler performs image classification using Keras in both Python and R: From the plots above, one can see that: the accuracy of your model doesn’t depend on the language you use to build and train it (the plot shows only train accuracy, but the model doesn’t have high variance and the bias accuracy is […]

Read More


February 2018
« Jan Mar »