The Basics Of PCA In R

Prashant Shekhar gives us an overview of Principal Component Analysis using R:

PCA changes the axis towards the direction of maximum variance and then takes projection on this new axis. The direction of maximum variance is represented by Principal Components (PC1). There are multiple principal components depending on the number of dimensions (features) in the dataset and they are orthogonal to each other. The maximum number of principal component is same as a number of dimension of data. For example, in the above figure, for two-dimension data, there will be max of two principal components (PC1 & PC2). The first principal component defines the most of the variance, followed by second principal component, third principal component and so on. Dimension reduction comes from the fact that it is possible to discard last few principal components as they will not capture much variance in the data.

PCA is a useful technique for reducing dimensionality and removing covariance.

Related Posts

Timing R Function Calls

Colin Gillespie shows off an R package for benchmarking: Of course, it’s more likely that you’ll want to compare more than two things. You can compare as many function calls as you want with mark(), as we’ll demonstrate in the following example. It’s probably more likely that you’ll want to compare these function calls against more […]

Read More

Linear Programming in Python

Francisco Alvarez shows us an example of linear programming in Python: The first two constraints, x1 ≥ 0 and x2 ≥ 0 are called nonnegativity constraints. The other constraints are then called the main constraints. The function to be maximized (or minimized) is called the objective function. Here, the objective function is x1 + x2. Two classes of […]

Read More

Categories

February 2018
MTWTFSS
« Jan Mar »
 1234
567891011
12131415161718
19202122232425
262728