Fun With Random Walks

Kevin Feasel



Emrah Mete simulates a random walk in R:

Let’s consider a game where a gambler is likely to win $1 with a probability of p and lose $1 with a probability of 1-p.

Now, let’s consider a game where a gambler is likely to win $1 and lose $1 with a probability of 1. The player starts the game with X dollars in hand. The player plays the game until the money in his hand reaches N (N> X) or he has no money left. What is the probability that the player will reach the target value? (We know that the player will not leave the game until he reaches the N value he wants to win.)

The problem of the story above is known in literature as Gambler’s Ruin or Random Walk. In this article, I will simulate this problem with R with different settings and examine how the game results change with different settings.

Click through for the script and analysis.  There’s a reason they call this game the gambler’s ruin.

Related Posts

Creating Map Plots With ggmap

Laura Ellis shows how to use the ggmap package to create choropleth maps in R: In the last map, it was a bit tricky to see the density of the incidents because all the graphed points were sitting on top of each other.  In this scenario, we are going to make the data all one […]

Read More

R 3.5.0 Released

Tal Galili announces that R 3.5.0 is now available: By default the (arbitrary) signs of the loadings from princomp() are chosen so the first element is non-negative. If –default-packages is not used, then Rscript now checks the environment variable R_SCRIPT_DEFAULT_PACKAGES. If this is set, then it takes precedence over R_DEFAULT_PACKAGES. If default packages are not specified on the command line or by one […]

Read More


February 2018
« Jan Mar »