Fun With Random Walks

Kevin Feasel



Emrah Mete simulates a random walk in R:

Let’s consider a game where a gambler is likely to win $1 with a probability of p and lose $1 with a probability of 1-p.

Now, let’s consider a game where a gambler is likely to win $1 and lose $1 with a probability of 1. The player starts the game with X dollars in hand. The player plays the game until the money in his hand reaches N (N> X) or he has no money left. What is the probability that the player will reach the target value? (We know that the player will not leave the game until he reaches the N value he wants to win.)

The problem of the story above is known in literature as Gambler’s Ruin or Random Walk. In this article, I will simulate this problem with R with different settings and examine how the game results change with different settings.

Click through for the script and analysis.  There’s a reason they call this game the gambler’s ruin.

Related Posts

Using ggpairs To Find Correlations Between Variables In R

Akshay Mahale shows how to use the ggpairs function in R to see the correlation between different pairs of variables: From the above matrix for iris we can deduce the following insights: Correlation between Sepal.Length and Petal.Length is strong and dense. Sepal.Length and Sepal.Width seems to show very little correlation as datapoints are spreaded through out the plot area. Petal.Length and Petal.Width also shows strong correlation. Note: The […]

Read More

Testing Spatial Equilibrium Concepts With tidycensus

Ignacio Sarmiento Barbieri walks us through the concept of spatial equilibrium and tests using data from the tidycensus package: Let’s take the model to the data and reproduce figures 2.1. and 2.2 of “Cities, Agglomeration, and Spatial Equilibrium”. The focus are two cities, Chicago and Boston. These cities are chosen because both differ in how easy […]

Read More


February 2018
« Jan Mar »