The Basics Of Jupyter Notebooks

Nigel Meakings has an introductory post to Jupyter Notebooks:

The Jupyter notebok environment consists of a browser-based notebook UI and a back-end server, running on port 8888 by default (if this port is taken it will start up on the next available port). This web server-based delivery of Notebooks means that you can browse to a remote server and execute your code there. This is the case, for example, when using a ready-made cluster such as an HDInsight Spark cluster, where all the tooling has been pre-installed for you. You open the notebook in the cluster portal within Azure, and it logs you in to the Jupyter server running on a node within the cluster. Note that if you want to allow multi-user access to your local Jupyter environment, you’ll need to be running a product such as JupyterHub.

I love using Jupyter when presenting because it’s the easiest way to intermix code, documentation, and images in one package, so it’s nice for pedagogical purposes.

Related Posts

Literate Programming And Notebooks

David Smith sums up a debate on notebooks versus literate programming: There’s no video yet available of Joel’s talk, but you can guess the theme of that opening slide, and walking through the slides conveys the message well, I think. Yuhui Xie, author and creator of the rmarkdown package, provides a detailed summary and response to Joel’s talk, […]

Read More

Scheduling Jupyter Notebooks

Matthew Seal, et al, explain how they schedule runs of Jupyter notebooks: On the surface, notebooks pose a lot of challenges: they’re frequently changed, their cell outputs need not match the code, they’re difficult to test, and there’s no easy way to dynamically configure their execution. Furthermore, you need a notebook server to run them, […]

Read More

Categories

February 2018
MTWTFSS
« Jan Mar »
 1234
567891011
12131415161718
19202122232425
262728