The Basics Of Jupyter Notebooks

Nigel Meakings has an introductory post to Jupyter Notebooks:

The Jupyter notebok environment consists of a browser-based notebook UI and a back-end server, running on port 8888 by default (if this port is taken it will start up on the next available port). This web server-based delivery of Notebooks means that you can browse to a remote server and execute your code there. This is the case, for example, when using a ready-made cluster such as an HDInsight Spark cluster, where all the tooling has been pre-installed for you. You open the notebook in the cluster portal within Azure, and it logs you in to the Jupyter server running on a node within the cluster. Note that if you want to allow multi-user access to your local Jupyter environment, you’ll need to be running a product such as JupyterHub.

I love using Jupyter when presenting because it’s the easiest way to intermix code, documentation, and images in one package, so it’s nice for pedagogical purposes.

Related Posts

Deploying Jupyter Notebooks

Teja Srivastasa has an example of deploying a Jupyter notebook for production use on AWS: No one can deny how large the online support community for data science is. Today, it’s possible to teach yourself Python and other programming languages in a matter of weeks. And if you’re ever in doubt, there’s a StackOverflow thread or […]

Read More

JupyterLab Now Available

Project Jupyter announces the general availability of JupyterLab: JupyterLab is an interactive development environment for working with notebooks, code and data. Most importantly, JupyterLab has full support for Jupyter notebooks. Additionally, JupyterLab enables you to use text editors, terminals, data file viewers, and other custom components side by side with notebooks in a tabbed work area. JupyterLab […]

Read More


February 2018
« Jan Mar »