Structural Topic Models In R

Julia Silge has a great post on building Structural Topic Models in R using stm and tidytext:

The stm package has a summary() method for trained topic models like these that will print out some details to your screen, but I want to get back to a tidy data frame so I can use dplyr and ggplot2 for data manipulation and data visualization. I can use tidy() on the output of an stm model, and then I will get the probabilities that each word is generated from each topic.

I haven’t watched the video yet, but that’s on my to-do list for today.

Related Posts

wrapr 1.5.0 Now On CRAN

John Mount announces wrapr 1.5.0: wrapr includes a lot of tools for writing better R code: let() (let block) %.>% (dot arrow pipe) build_frame() / draw_frame() ( data.frame builders and formatters ) qc() (quoting concatenate) := (named map builder) %?% (coalesce) NEW! %.|% (reduce/expand args) NEW! uniques() (safe unique() replacement) NEW! partition_tables() / execute_parallel() NEW! DebugFnW() (function debug wrappers) λ() (anonymous function builder) John also includes an example using the coalesce operator %?%.

Read More

Using The Azure Data Science VM With GPUs

Jennifer Marsman has some tips and tricks around using the Azure Data Science Virtual Machine on an instance running with GPU support: To get GPU support, you need both hardware with GPUs in a datacenter, as well as the right software – namely, a virtual machine image that includes GPU drivers so you can use […]

Read More


January 2018
« Dec Feb »