Zippy Base R

Kevin Feasel

2018-01-16

R

John Mount defends the honor of base R:

The graph summarizes the performance of four solutions to the “scoring logistic regression by hand” problem:

  • Optimized Base R: a specialized “pre allocate and work with vectorized indices” method. This is fast as it is able to express our particular task in a small number of purely base R vectorized operations. We are hoping to build some teaching materials about this methodology.

  • Idiomatic Base R (shown dashed): an idiomatic R method using stats::aggregate() to solve the problem. This method is re-plotted in both graphs as a dashed line and works as a good division between what is fast versus what is slow.

  • data.table: a straightforward data.table solution (another possible demarcation between fast and slow).

  • dplyr (no grouped filter): a dplyr solution (tuned to work around some known issues).

Read the whole thing, including the comments section, where there’s a good bit of helpful back-and-forth.

Related Posts

Loops Versus Apply: Speed Comparison

Mike Spencer compares lapply (single core and its multi-core version) versus a for loop in R: But how fast were they? Can we get faster? Thankfully R provides `system.time()` for timing code execution. In order to get faster, it makes sense to use all the processing power our machines have. The ‘parallel’ library has some […]

Read More

Quoted Concatenation In R

John Mount has a quick tip for R users: Here is an R tip. Need to quote a lot of names at once? Use qc(). This function is part of wrapr.

Read More

Categories

January 2018
MTWTFSS
« Dec Feb »
1234567
891011121314
15161718192021
22232425262728
293031