Eugene Meidinger takes a whack at the data professional salary survey:

So I’m using something called a multiple linear regression to make a formula to predict your salary based on specific variables. Unfortunately, the highest Coefficient of Determination (or R

^{2}) I’ve been able to get is 0.37. Which means, as far as I understand it, that at most the model explains 37% of the variation.Additionally the spread on the results isn’t great either. The standard deviation, a measure of spread, is about $25,000 on the original subset of data. Which means we’d expect 68% to be within +/- $25,000 of the average and 95% to be within +/- $50,000 of the average. So what happens when we apply our model?

Read on for Eugene’s early findings and a roadmap for additional posts.

Kevin Feasel

2018-01-15

Data Science