Parallelization With Rcpp

Kevin Feasel



Blazej Moska demonstrates how to use Rcpp to parallelize R code:

One of the frustrating moments while working with data is when you need results urgently, but your dataset is large enough to make it impossible. This happens often when we need to use algorithm with high computational complexity. I will demonstrate it on the example I’ve been working with.

Suppose we have large dataset consisting of association rules. For some reasons we want to slim it down. Whenever two rules consequents are the same and one rule’s antecedent is a subset of second rule’s antecedent, we want to choose the smaller one (probability of obtaining smaller set is bigger than probability of obtaining bigger set).

Read the whole thing.

Related Posts

Scatterplots For Multivariate Analysis

Neil Saunders declutters a complicated visual with a simple scatterplot: Sydney’s congestion at ‘tipping point’ blares the headline and to illustrate, an interactive chart with bars for city population densities, points for commute times and of course, dual-axes. Yuck. OK, I guess it does show that Sydney is one of three cities that are low density, […]

Read More

Using ggpairs To Find Correlations Between Variables In R

Akshay Mahale shows how to use the ggpairs function in R to see the correlation between different pairs of variables: From the above matrix for iris we can deduce the following insights: Correlation between Sepal.Length and Petal.Length is strong and dense. Sepal.Length and Sepal.Width seems to show very little correlation as datapoints are spreaded through out the plot area. Petal.Length and Petal.Width also shows strong correlation. Note: The […]

Read More


January 2018
« Dec Feb »