Python Data Frames In ML Services

Robert Sheldon continues his SQL Server Machine Learning Services series by looking at Python data frames:

This article focuses on using data frames in Python. It is the second article in a series about MLS and Python. The first article introduced you briefly to data frames. This article continues that discussion, describing how to work with data frame objects and the data within those objects.

Data frames and the functions they support are available to MLS and Python through the pandas library. The library is available as a Python module that provides tools for analyzing and manipulating data, including the ability to generate data frame objects and work with data frame data. The pandas library is included by default in MLS, so the functions and data structures available to pandas are ready to use, without having to manually install pandas in the MLS library.

There’s quite a bit to this article, making it an interesting read.

Related Posts

Natural Language Generation With Markov Chains

Abdul Majed Raja shows off Markovify, a Python package which builds sentences using Markov chains: Markov chains, named after Andrey Markov, are mathematical systems that hop from one “state” (a situation or set of values) to another. For example, if you made a Markov chain model of a baby’s behavior, you might include “playing,” “eating”, […]

Read More

TensorFlow Lite

Laurence Maroney explains TensorFlow Lite: TensorFlow Lite is TensorFlow’s lightweight solution for mobile and embedded devices. It enables on-device machine learning inference with low latency and a small binary size. TensorFlow Lite also supports hardware acceleration with the Android Neural Networks API. It’s designed to be low-latency, with optimized kernels for mobile apps, pre-fused activations and […]

Read More

Categories

December 2017
MTWTFSS
« Nov Jan »
 123
45678910
11121314151617
18192021222324
25262728293031