When Spark Meets Hive

Anna Martin and Rosaria Silipo look at combining HiveQL and SparkQL:

We set our goal here to investigate the age distribution of Maine residents, men and women, using SQL queries. But the question is… on Apache Hive or on Apache Spark? Well, why not both? We could use SparkSQL to extract men’s age distribution and HiveQL to extract women’s age distribution. We could then compare the two distributions and see if they show any difference.

But the main question, as usual, is: Will SparkSQL queries and HiveQL queries blend?

Topic: Age distribution for men and women in the U.S. state of Maine.

Challenge: Blend results from Hive SQL and Spark SQL queries.

Access mode: Apache Spark and Apache Hive nodes for SQL processing.

Using KNIME, the authors are able to blend together data from different sources.

Related Posts

Five Books For Learning Kafka

Data Flair has a guide to five books to help you learn Apache Kafka: The book “Kafka: The Definitive Guide” is written by engineers from Confluent andLinkedIn who are responsible for developing Kafka. They explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. It contains detailed examples as well. […]

Read More

Push-Based Alerting With Kafka Streams

Robin Moffatt shows how to take syslog data and create a notification app using Python and Kafka Streams: Now we can query from it and show the aggregate window timestamp alongside the result: ksql> SELECT ROWTIME, TIMESTAMPTOSTRING(ROWTIME, 'yyyy-MM-dd HH:mm:ss'), \ HOST, INVALID_LOGIN_COUNT \ FROM INVALID_USERS_LOGINS_PER_HOST; 1521644100000 | 2018-03-21 14:55:00 | rpi-03 | 1 1521646620000 | […]

Read More

Categories

December 2017
MTWTFSS
« Nov Jan »
 123
45678910
11121314151617
18192021222324
25262728293031