When Spark Meets Hive

Anna Martin and Rosaria Silipo look at combining HiveQL and SparkQL:

We set our goal here to investigate the age distribution of Maine residents, men and women, using SQL queries. But the question is… on Apache Hive or on Apache Spark? Well, why not both? We could use SparkSQL to extract men’s age distribution and HiveQL to extract women’s age distribution. We could then compare the two distributions and see if they show any difference.

But the main question, as usual, is: Will SparkSQL queries and HiveQL queries blend?

Topic: Age distribution for men and women in the U.S. state of Maine.

Challenge: Blend results from Hive SQL and Spark SQL queries.

Access mode: Apache Spark and Apache Hive nodes for SQL processing.

Using KNIME, the authors are able to blend together data from different sources.

Related Posts

Kafka Connect Converters And Serialization

Robin Moffatt goes into great detail on Apache Kafka Connect converters and serialization techniques: Kafka Connect is modular in nature, providing a very powerful way of handling integration requirements. Some key components include: Connectors – the JAR files that define how to integrate with the data store itself Converters – handling serialization and deserialization of […]

Read More

Tuning Apache Spark Applications

Vidisha Gupta has a few tips for tuning Apache Spark programs: Data Serialization – Serialization plays an important role in increasing the performance of any application. Spark provides two serialization libraries – Java Serialization: By default, spark uses Java’s ObjectOutputStream framework which can work with any class that implements java.io.serializable. This serialization is flexible but slow and […]

Read More

Categories

December 2017
MTWTFSS
« Nov Jan »
 123
45678910
11121314151617
18192021222324
25262728293031