Avro Schemas In Kafka

Kevin Feasel

2017-12-13

Hadoop

Stephane Maarek explains the value of using Apache Avro as a schema structure for your Kafka topics:

  • Avro has support for primitive types ( intstringlongbytes, etc…), complex types (enumarraysunions, optionals), logical types (datestimestamp-millisdecimal), and data record (name and namespace). All the types you’ll ever need.

  • Avro has support for embedded documentation. Although documentation is optional, in my workflow I will reject any Avro Schema PR (pull request) that does not document every single field, even if obvious. By embedding documentation in the schema, you reduce data interpretation misunderstandings, you allow other teams to know about your data without searching a wiki, and you allow your devs to document your schema where they define it. It’s a win-win for everyone.

  • Avro schemas are defined using JSON. Because every developer knows or can easily learn JSON, there’s a very low barrier to entry

Read on for more about Avro as well as the possibilities of using other techniques for defining schemas in Kafka.

Related Posts

Leveraging Hive In Pyspark

Fisseha Berhane shows how to use Spark to connect Python to Hive: If we are using earlier Spark versions, we have to use HiveContext which is variant of Spark SQL that integrates with data stored in Hive. Even when we do not have an existing Hive deployment, we can still enable Hive support. In this […]

Read More

Stream Reactor Update

Andrew Stevenson announces Stream Reactor 1.0.0 for Kafka Connect 1.0: Stream Reactor is an Apache License, Version 2.0 open source collection of components built on top of Kafka and provides Kafka Connect compatible connectors to move data between Kafka and popular data stores. Stream Reactor provides source connectors to publish data into Kafka and sink connectorsto bring data from Kafka […]

Read More

Categories

December 2017
MTWTFSS
« Nov Jan »
 123
45678910
11121314151617
18192021222324
25262728293031