Kafka Streams And Time-Based Batching

Vladimir Vajda provides a warning for people using Kafka Streams:

To completely understand the problem, we will first go into detail how ingestion and processing occur by default in Kafka Streams. For example purposes, the punctuate method is configured to occur every ten seconds, and in the input stream, we have exactly one message per second. The purpose of the job is to parse input messages, collect them, and, in the punctuate method, do a batch insert in the database, then to send metrics.

After running the Kafka Stream application, the Processor will be created, followed by the initmethod. Here is where all the connections are established. Upon successful start, the application will listen to input topic for incoming messages. It will remain idle until the first message arrives. When the first message arrives, the process method is called — this is where transformations occur and where the result is stored for later use. If no messages are in the input topic, the application will go idle again, waiting for the next message. After each successful process, the application checks if punctuate should be called. In our case, we will have ten process calls followed by one punctuate call, with this cycle repeating indefinitely as long as there are messages.

A pretty obvious behavior, isn’t it? Then why is one bolded?

Read on for more, including how to handle this edge case.

Related Posts

Kafka Connect Converters And Serialization

Robin Moffatt goes into great detail on Apache Kafka Connect converters and serialization techniques: Kafka Connect is modular in nature, providing a very powerful way of handling integration requirements. Some key components include: Connectors – the JAR files that define how to integrate with the data store itself Converters – handling serialization and deserialization of […]

Read More

Tuning Apache Spark Applications

Vidisha Gupta has a few tips for tuning Apache Spark programs: Data Serialization – Serialization plays an important role in increasing the performance of any application. Spark provides two serialization libraries – Java Serialization: By default, spark uses Java’s ObjectOutputStream framework which can work with any class that implements java.io.serializable. This serialization is flexible but slow and […]

Read More


December 2017
« Nov Jan »