Avro And Streaming Data

Pat Patterson shows how to get the advantages of the Avro file format while streaming individual records:

Avro is a very efficient way of storing data in files, since the schema is written just once, at the beginning of the file, followed by any number of records (contrast this with JSON or XML, where each data element is tagged with metadata). Similarly, Avro is well suited to connection-oriented protocols, where participants can exchange schema data at the start of a session and exchange serialized records from that point on. Avro works less well in a message-oriented scenario since producers and consumers are loosely coupled and may read or write any number of records at a time. To ensure that the consumer has the correct schema, it must either be exchanged “out of band” or accompany every message. Unfortunately, sending the schema with every message imposes significant overhead — in many cases, the schema is as big as the data or even bigger!

Read on to see how the Confluent Schema Registry can solve this problem.

Related Posts

Using Databricks Delta In Lieu Of Lambda Architecture

Jose Mendes contrasts the Lambda architecture with the Databricks Delta architecture and gives us a quick example of using Databricks Delta: The major problem of the Lambda architecture is that we have to build two separate pipelines, which can be very complex, and, ultimately, difficult to combine the processing of batch and real-time data, however, […]

Read More

An Overview Of Apache Kafka

Leona Zhang has a series going on Apache Kafka.  Part one covers some of the concepts around messaging systems: There is a difference between batch processing applications and stream processing applications. A visible boundary determines the most significant difference between batch processing and stream processing. If it exists, it is called batch processing. For example, […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031