Position Differences And Convolutional Neural Networks

Pete Warden shares his knowledge of how convolutional neural networks deal with position differences in images:

If you’re trying to recognize all images with the sun shape in them, how do you make sure that the model works even if the sun can be at any position in the image? It’s an interesting problem because there are really three stages of enlightenment in how you perceive it:

  • If you haven’t tried to program computers, it looks simple to solve because our eyes and brain have no problem dealing with the differences in positioning.

  • If you have tried to solve similar problems with traditional programming, your heart will probably sink because you’ll know both how hard dealing with input differences will be, and how tough it can be to explain to your clients why it’s so tricky.

  • As a certified Deep Learning Guru, you’ll sagely stroke your beard and smile, safe in the knowledge that your networks will take such trivial issues in their stride.

It’s a good read.

Related Posts

Comparing TensorFlow Versus PyTorch

Anirudh Rao compares PyTorch to TensorFlow: For small-scale server-side deployments both frameworks are easy to wrap in e.g. a Flask web server. For mobile and embedded deployments, TensorFlow works really well. This is more than what can be said of most other deep learning frameworks including PyTorch. Deploying to Android or iOS does require a non-trivial amount of work in TensorFlow. You don’t have to rewrite the entire inference portion of your model in Java or C++. […]

Read More

Using R To Hit Azure ML From Power BI

Leila Etaati shows how you can use R to hit an Azure ML endpoint to populate a data set in Power BI: You need to create a model in Azure ML Studio and create a web service for it. The traditional example in Predict a passenger on Titanic ship is going to survived or not? […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031