Using Spark Streaming On Kafka

Ayush Tiwari has an introductory tutorial on using Spark Streaming on top of Kafka:

The Spark Streaming integration for Kafka 0.10 is similar in design to the 0.8 Direct Stream approach. It provides simple parallelism, 1:1 correspondence between Kafka partitions and Spark partitions, and access to offsets and metadata. However, because the newer integration uses the new Kafka consumer API instead of the simple API, there are notable differences in usage. This version of the integration is marked as experimental, so the API is potentially subject to change.

In this blog, I am going to implement the basic example on Spark Structured Streaming & Kafka Integration.

This is a code-heavy tutorial, so check it out.

Related Posts

Setting Up SparklyR In Azure

David Smith shows how you can spin up a Spark cluster in Azure and install SparklyR on top of it: The SparklyR package from RStudio provides a high-level interface to Spark from R. This means you can create R objects that point to data frames stored in the Spark cluster and apply some familiar R paradigms (like dplyr) […]

Read More

Apache NiFi 1.5 Updates

Tim Spann shows off some nice additions to Apache NiFi: Another cool processor that I will talk about in greater detail in future articles is the much-requested Spark Processor. The ExecuteSparkInteractive processor with its Livy Controller Service gives you a much better alternative to my hacky REST integration to calling Apache Spark batch and machine learning jobs. There are […]

Read More

Categories

September 2017
MTWTFSS
« Aug Oct »
 123
45678910
11121314151617
18192021222324
252627282930