Spark Data Structures

Kevin Feasel

2017-07-31

Spark

Shubham Agarwal explains the difference between three Spark data structures:

DataFrame(DF) – 

DataFrame is an abstraction which gives a schema view of data. Which means it gives us a view of data as columns with column name and types info, We can think data in data frame like a table in the database.

Like RDD, execution in Dataframe too is lazy triggered.

Read on to learn more about Resilient Distributed Datasets, DataFrames, and DataSets.

Related Posts

Connect(); Announcements, Including Azure Databricks

James Serra has a wrapup of Microsoft Connect(); announcements around the data platform space: Microsoft Connect(); is a developer event from Nov 15-17, where plenty of announcements are made.  Here is a summary of the data platform related announcements: Azure Databricks: In preview, this is a fast, easy, and collaborative Apache Spark based analytics platform optimized for Azure. […]

Read More

Getting Started With Zeppelin

Sangeeta Gulia shows us how to get started building notebooks with Apache Zeppelin on top of Spark: There are 3 interpreter modes available in Zeppelin. 1) Shared Mode In Shared mode, a SparkContext and a Scala REPL is being shared among all interpreters in the group. So every Note will be sharing single SparkContext and single […]

Read More

Categories

July 2017
MTWTFSS
« Jun Aug »
 12
3456789
10111213141516
17181920212223
24252627282930
31