Spark Data Structures

Kevin Feasel

2017-07-31

Spark

Shubham Agarwal explains the difference between three Spark data structures:

DataFrame(DF) – 

DataFrame is an abstraction which gives a schema view of data. Which means it gives us a view of data as columns with column name and types info, We can think data in data frame like a table in the database.

Like RDD, execution in Dataframe too is lazy triggered.

Read on to learn more about Resilient Distributed Datasets, DataFrames, and DataSets.

Related Posts

Flint: Time Series With Spark

Li Jin and Kevin Rasmussen cover the concepts of Flint, a time-series library built on Apache Spark: Time series analysis has two components: time series manipulation and time series modeling. Time series manipulation is the process of manipulating and transforming data into features for training a model. Time series manipulation is used for tasks like data […]

Read More

ElasticMapReduce And RStudio

Tanzir Musabbir demonstrates how to set up Amazon ElasticMapReduce to include an RStudio edge node: RStudio Server provides a browser-based interface for R and a popular tool among data scientists. Data scientist use Apache Spark cluster running on  Amazon EMR to perform distributed training. In a previous blog post, the author showed how you can install RStudio Server on Amazon […]

Read More

Categories

July 2017
MTWTFSS
« Jun Aug »
 12
3456789
10111213141516
17181920212223
24252627282930
31