Spark Data Structures

Kevin Feasel

2017-07-31

Spark

Shubham Agarwal explains the difference between three Spark data structures:

DataFrame(DF) – 

DataFrame is an abstraction which gives a schema view of data. Which means it gives us a view of data as columns with column name and types info, We can think data in data frame like a table in the database.

Like RDD, execution in Dataframe too is lazy triggered.

Read on to learn more about Resilient Distributed Datasets, DataFrames, and DataSets.

Related Posts

When Not to Use Spark

Ramandeep Kaur gives us several cases when it makes sense not to use Apache Spark: There can be use cases where Spark would be the inevitable choice. Spark considered being an excellent tool for use cases like ETL of a large amount of a dataset, analyzing a large set of data files, Machine learning, and […]

Read More

Hyperparameter Tuning with MLflow

Joseph Bradley shows how you can perform hyperparameter tuning of an MLlib model with MLflow: Apache Spark MLlib users often tune hyperparameters using MLlib’s built-in tools CrossValidator and TrainValidationSplit.  These use grid search to try out a user-specified set of hyperparameter values; see the Spark docs on tuning for more info. Databricks Runtime 5.3 and 5.3 ML and above support […]

Read More

Categories

July 2017
MTWTFSS
« Jun Aug »
 12
3456789
10111213141516
17181920212223
24252627282930
31