Using Sqoop To Move Data To Hadoop

Kevin Feasel

2017-07-18

Hadoop

The folks at Redglue have a few hints on using Sqoop to move data from a relational database to Hadoop:

  • “Data gets updated” problem

Data gets updated many times and loading data with Sqoop is not a single event as data that you are importing can be updated (INSERTed, DELETed or UPDATed). What is important here, is that, HDFS is an “append-only filesystem” (exceptions made to HBase and Hive with ACID, but they are mostly tricks) and the options are pretty simple: replace the dataset, add data to dataset (partition for example) or merge datasets between old and new data.

If the data that you are loading is a small dataset, don’t think twice, replace and overwrite it.

If the data that you are loading is a big data set, a “incremental” load is recommended. This can be a little tricky as Sqoop needs to know what modification were done since the last incremental or full import.

I’m not a huge fan of Sqoop and prefer to use my own ingest mechanisms, but it’s an easy way to get started.

Related Posts

Kafka Topic Reuse

Martin Kleppmann walks through the trade-offs of reusing Apache Kafka topics for different event types: The common wisdom (according to several conversations I’ve had, and according to a mailing list thread) seems to be: put all events of the same type in the same topic, and use different topics for different event types. That line of […]

Read More

Set Operations In Spark

Fisseha Berhane compares SparkSQL, DataFrames, and classic RDDs when performing certain set-based operations: In this fourth part, we will see set operators in Spark the RDD way, the DataFrame way and the SparkSQL way. Also, check out my other recent blog posts on Spark on Analyzing the Bible and the Quran using Spark and Spark […]

Read More

Categories

July 2017
MTWTFSS
« Jun Aug »
 12
3456789
10111213141516
17181920212223
24252627282930
31