Using Sqoop To Move Data To Hadoop

Kevin Feasel



The folks at Redglue have a few hints on using Sqoop to move data from a relational database to Hadoop:

  • “Data gets updated” problem

Data gets updated many times and loading data with Sqoop is not a single event as data that you are importing can be updated (INSERTed, DELETed or UPDATed). What is important here, is that, HDFS is an “append-only filesystem” (exceptions made to HBase and Hive with ACID, but they are mostly tricks) and the options are pretty simple: replace the dataset, add data to dataset (partition for example) or merge datasets between old and new data.

If the data that you are loading is a small dataset, don’t think twice, replace and overwrite it.

If the data that you are loading is a big data set, a “incremental” load is recommended. This can be a little tricky as Sqoop needs to know what modification were done since the last incremental or full import.

I’m not a huge fan of Sqoop and prefer to use my own ingest mechanisms, but it’s an easy way to get started.

Related Posts

Working With The Databricks API Via Powershell

Gerhard Brueckl has a Powershell module for interacting with Databricks, either Azure or AWS: As most of our deployments use PowerShell I wrote some cmdlets to easily work with the Databricks API in my scripts. These included managing clusters (create, start, stop, …), deploying content/notebooks, adding secrets, executing jobs/notebooks, etc. After some time I ended […]

Read More

Kafka Connect Converters And Serialization

Robin Moffatt goes into great detail on Apache Kafka Connect converters and serialization techniques: Kafka Connect is modular in nature, providing a very powerful way of handling integration requirements. Some key components include: Connectors – the JAR files that define how to integrate with the data store itself Converters – handling serialization and deserialization of […]

Read More


July 2017
« Jun Aug »