Dimensional Modeling

Jen Underwood explains the basics of dimensional modeling:

A dimensional model is also commonly called a star schema. It provides a way to improve report query performance without affecting data integrity. This type of model is popular in data warehousing because it can provide better query performance than transactional, normalized, OLTP data models. It also allows for data history to be stored accurately over time for reporting. Another reason why dimensional models are created…they are easier for non-technical users to navigate. Creating reports by joining many OLTP database tables together becomes overwhelming quickly.

Dimensional models contain facts surrounded by descriptive data called dimensions. Facts contains numerical values of what you measure such as sales or user counts that are additive, or semi-additive in nature. Fact tables also contain the keys/links to associated dimension tables. Compared to most dimension tables, fact tables typically have a large number of rows.

Jen’s post was built off of an early SQL Saturday presentation.  It’s still quite relevant today.

Related Posts

Machine Learning and Delta Lake

Brenner Heintz and Denny Lee walk us through solving data engineering problems with Delta Lake: As a result, companies tend to have a lot of raw, unstructured data that they’ve collected from various sources sitting stagnant in data lakes. Without a way to reliably combine historical data with real-time streaming data, and add structure to […]

Read More

Don’t Truncate Facts and Dimensions when Loading Data

Meagan Longoria explains why a truncate-and-reload strategy for data warehouses isn’t a good look: Every once in a while, I come across a data warehouse where the data load uses a full truncate and reload pattern to populate a fact or dimension. While it may not be the end of the world for a small […]

Read More

Categories

July 2017
MTWTFSS
« Jun Aug »
 12
3456789
10111213141516
17181920212223
24252627282930
31