Glenn Berry explains what’s going on with Intel Xeon scalable processors:
The Skylake-SP has a different cache architecture that changes from a shared-distributed model used in Broadwell-EP/EX to a private-local model used in Skylake-SP. How this change will affect SQL Server workloads remains to be seen.
In Broadwell-EP/EX, each physical core had a 256KB private L2 cache, while all of the cores shared a larger L3 cache that could be as large as 60MB (typically 2.5MB/core). All of the lines in the L2 cache for each core were also present in the inclusive, shared L3 cache.
In Skylake-SP, each physical core has a 1MB private L2 cache, while all of the cores share a larger L3 cache that can be as large as 38.5MB (typically 1.375MB/core). All of the lines in the L2 cache for each core may not be present in the non-inclusive, shared L3 cache.
A larger L2 cache increases the hit ratio from the L2 cache, resulting in lower effective memory latency and lowered demand on the L3 cache and the mesh interconnect. L2 cache is typically about 4X faster than L3 cache in Skylake-SP. Figure 2 details the new cache architecture changes in Skylake-SP.
Glenn explains what the performance ramifications of these changes are, and also gives a consumer caveat regarding a major price difference based on memory capacity per socket.