An Introduction To Kafka

Kevin Feasel

2017-07-14

Hadoop

Prashant Sharma explains the basics of Apache Kafka:

Apache describes Kafka as a distributed streaming platform that lets us:

  1. Publish and subscribe to streams of records.

  2. Store streams of records in a fault-tolerant way.

  3. Process streams of records as they occur.

Kafka is probably the most generally interesting of the current Hadoop ecosystem, with Spark not too far behind.  By “generally interesting,” I mean in the sense that companies with no vested interest in Hadoop as a whole could still be excited by the prospect of Kafka.

Related Posts

Databricks Runtime 5.2 Released

Nakul Jamadagni announces Databricks Runtime 5.2: Delta Time TravelTime Travel, released as an Experimental feature, adds the ability to query a snapshot of a table using a timestamp string or a version, using SQL syntax as well as DataFrameReader options for timestamp expressions.Sample codeSELECT count() FROM events TIMESTAMP AS OF timestamp_expressionSELECT count() FROM events VERSION AS OF version Time travel looks a bit like temporal tables in SQL Server.

Read More

Kafka And The Differing Aims Of Data Professionals

Kai Waehner argues that there is an impedence mismatch between data engineers, data scientists, and ML production engineers: Data scientists love Python, period. Therefore, the majority of machine learning/deep learning frameworks focus on Python APIs. Both the stablest and most cutting edge APIs, as well as the majority of examples and tutorials use Python APIs. […]

Read More

Categories

July 2017
MTWTFSS
« Jun Aug »
 12
3456789
10111213141516
17181920212223
24252627282930
31