Kevin Feasel


Graph, R

Thomas Lin Pedersen announces tidygraph, a tidyverse library for dealing with graphs and trees in R:

One of the simplest concepts when computing graph based values is that of
centrality, i.e. how central is a node or edge in the graph. As this
definition is inherently vague, a lot of different centrality scores exists that
all treat the concept of central a bit different. One of the famous ones is
the pagerank algorithm that was powering Google Search in the beginning.
tidygraph currently has 11 different centrality measures and all of these are
prefixed with centrality_* for easy discoverability. All of them returns a
numeric vector matching the nodes (or edges in the case of

This is a big project and is definitely interesting if you’re looking at analyzing graph data.

Related Posts

Linear Discriminant Analysis

Jake Hoare explains Linear Discriminant Analysis: Linear Discriminant Analysis takes a data set of cases (also known as observations) as input. For each case, you need to have a categorical variable to define the class and several predictor variables (which are numeric). We often visualize this input data as a matrix, such as shown below, with each case being a row and each variable a column. In this […]

Read More

Azure Data Lake Store File Management With httr

Leila Etaati shows how to generate RESTful statements in R using httr: In this post, I am going to share my experiment in how to do file management in ADLS using R studio, to do this you need to have below items 1. An Azure subscription 2. Create an Azure Data Lake Store Account 3. […]

Read More


July 2017
« Jun Aug »