Tidygraph

Kevin Feasel

2017-07-07

Graph, R

Thomas Lin Pedersen announces tidygraph, a tidyverse library for dealing with graphs and trees in R:

One of the simplest concepts when computing graph based values is that of
centrality, i.e. how central is a node or edge in the graph. As this
definition is inherently vague, a lot of different centrality scores exists that
all treat the concept of central a bit different. One of the famous ones is
the pagerank algorithm that was powering Google Search in the beginning.
tidygraph currently has 11 different centrality measures and all of these are
prefixed with centrality_* for easy discoverability. All of them returns a
numeric vector matching the nodes (or edges in the case of
centrality_edge_betweenness()).

This is a big project and is definitely interesting if you’re looking at analyzing graph data.

Related Posts

Reasons For Using Docker With R

Jeroen Ooms gives us a few reasons why we might want to containerize our R-based products: The flagship of the OpenCPU system is the OpenCPU server: a mature and powerful Linux stack for embedding R in systems and applications. Because OpenCPU is completely open source we can build and ship on DockerHub. A ready-to-go linux server […]

Read More

Linear Discriminant Analysis

Jake Hoare explains Linear Discriminant Analysis: Linear Discriminant Analysis takes a data set of cases (also known as observations) as input. For each case, you need to have a categorical variable to define the class and several predictor variables (which are numeric). We often visualize this input data as a matrix, such as shown below, with each case being a row and each variable a column. In this […]

Read More

Categories

July 2017
MTWTFSS
« Jun Aug »
 12
3456789
10111213141516
17181920212223
24252627282930
31