Regularization Prevents Overfitting

Hui Li has an explanation of what regularization is and how it works to reduce the likelihood of overfitting training data:

Assume that the red line is the regression model we learn from the training data set. It can be seen that the learned model fits the training data set perfectly, while it cannot generalize well to the data not included in the training set. There are several ways to avoid the problem of overfitting.

To remedy this problem, we could:

  • Get more training examples.
  • Use a simple predictor.
  • Select a subsample of features.

In this blog post, we focus on the second and third ways to avoid overfitting by introducing regularization on the parameters βi of the model.

Read the whole thing.

Related Posts

Non-Linear Classifiers with Support Vector Machines

Rahul Khanna continues a series on support vector machines: In this blog post, we will look at a detailed explanation of how to use SVM for complex decision boundaries and build Non-Linear Classifiers using SVM. The primary method for doing this is by using Kernels. In linear SVM we find margin maximizing hyperplane with features […]

Read More

Vectors for Programmers

John Mount has a couple of videos available: We have just released two new free video lectures on vectors from a programmer’s point of view. I am experimenting with what ideas do programmers find interesting about vectors, what concepts do they consider safe starting points, and how to condense and present the material. Click through […]

Read More

Categories

July 2017
MTWTFSS
« Jun Aug »
 12
3456789
10111213141516
17181920212223
24252627282930
31