Basics Of Neural Nets

Leila Etaati has a new series on neural nets in R:

in Neural Network, we have some hidden Nodes that do the main job ! they found the best value for the output, they are using some function that we call that functions as “Activation function” for instance in below picture, Node C is a hidden node that take the values from node A and B. as you can see the weight (the better path) related to Node B as shown in tick line that means Node B may lead to get better results so Node C get input values from Node B not Node A.

If you have time, also check out the linked YouTube videos.

Related Posts

Combining Plots In R With cowplot

Abdul Majed Raja shows how to use the cowplot library in R to merge together independent plots into a single image: The way it works in cowplot is that, we have assign our individual ggplot-plots as an R object (which is by default of type ggplot). These objects are finally used by cowplot to produce […]

Read More

Where Machine Learning And Econometrics Collide

Dave Giles shares some thoughts on how machine learning and econometrics relate: What is Machine Learning (ML), and how does it differ from Statistics (and hence, implicitly, from Econometrics)? Those are big questions, but I think that they’re ones that econometricians should be thinking about. And if I were starting out in Econometrics today, I’d […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930