Envisioning Neural Nets As Org Charts

Maiia Bakhova describes the layout of a neural net as similar to a chain of command within an organization:

We can observe a lot of in common with a corporation chain of command. As we see middle managers are hidden layers which do the balk of the job.  We have the similar information flow and processing which is analogous to forward propagation and backward propagation.
What is left now is to explain that  dealing with sigmoid function at each node is too costly so it mostly reserved for CEO level.

That’s a metaphor I hadn’t heard before.

Related Posts

Combining Keras With Apache MXNet

Lai Wei, et al, show how to build a neural network in Keras 2 using MXNet as the engine: Distributed training with Keras 2 and MXNet This article shows how to install Keras-MXNet and demonstrates how to train a CNN and an RNN. If you tried distributed training with other deep learning engines before, you […]

Read More

Tuning xgboost Models In R

Gabriel Vasconcelos has a new series on tuning xgboost models: My favourite Boosting package is the xgboost, which will be used in all examples below. Before going to the data let’s talk about some of the parameters I believe to be the most important. These parameters mostly are used to control how much the model […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930