What’s New In Hadoop 3.0?

Shubham Sinha explains some of the changes coming to Hadoop:

Integrating EC with HDFS can maintain the same fault-tolerance with improved storage efficiency. As an example, a 3x replicated file with 6 blocks will consume 6*3 = 18 blocks of disk space. But with EC (6 data, 3 parity) deployment, it will only consume 9 blocks (6 data blocks + 3 parity blocks) of disk space. This only requires the storage overhead up to 50%.

Since Erasure coding requires additional overhead in the reconstruction of the data due to performing remote reads, thus it is generally used for storing less frequently accessed data. Before deploying Erasure code, users should consider all the overheads like storage, network and CPU overheads of erasure coding.

Now to support the Erasure Coding effectively in HDFS they made some changes in the architecture. Lets us take a look at the architectural changes.

There are some nice features coming to Hadoop version 3.

Related Posts

Testing Kafka Streams Applications

Yeva Byzek continues her series on testing Kafka-based streaming applications: When you create a stream processing application with Kafka’s Streams API, you create a Topologyeither using the StreamsBuilder DSL or the low-level Processor API. Normally, the topology runs with the KafkaStreams class, which connects to a Kafka cluster and begins processing when you call start(). For testing though, connecting to a running […]

Read More

Auto ML With SQL Server 2019 Big Data Clusters

Marco Inchiosa has a model scenario for using Big Data Clusters to scale out a machine learning problem: H2O provides popular open source software for data science and machine learning on big data, including Apache SparkTM integration. It provides two open source python AutoML classes: h2o.automl.H2OAutoML and pysparkling.ml.H2OAutoML. Both APIs use the same underlying algorithm implementations, […]

Read More