Optimizing Kafka

Yeva Byzek explains different tuning options available within Apache Kafka:

Without needing to make any changes to Kafka configuration parameters, you can setup a development Kafka environment and test basic functionality. Yet the fact that Kafka runs straight off the shelf does not mean you won’t want to do some tuning before you go into production. The reason to tune is that different use cases will have different sets of requirements that will drive different service goals. To optimize for those service goals, there are Kafka configuration parameters that you should change. In fact, the Kafka design itself provides configuration flexibility to users, and to make sure your Kafka deployment is optimized for your service goals, you absolutely should investigate tuning the settings of some configuration parameters and benchmarking in your own environment. Ideally, you should do that before you go to production, or at least before you scale out to a larger cluster size.

We have written a white paper to help you identify those service goals, configure your Kafka deployment to optimize for them, and ensure that you are achieving them through monitoring.

Read the whole thing, especially the part about throughput versus latency.

Related Posts

Enabling Exactly-Once Kafka Streams

Guozhang Wang wraps up his exactly-once series in Kafka: When restarting the application from the point of failure, we would then try to resume processing from the previously remembered position in the input Kafka topic, i.e. the committed offset. However, since the application was not able to commit the offset of the processed message A before crashing […]

Read More

Reducing Reads In Queries

Bert Wagner has a few tips for improving query performance by reducing the number of reads: If SQL Server thinks it only is going to read 1 row of data, but instead needs to read way more rows of data, it might choose a poor execution plan which results in more reads. You might get a suboptimal […]

Read More

Categories