Introduction To Amazon Kinesis

Jen Underwood describes Amazon Kinesis:

Amazon Kinesis is a fully managed service for real-time processing of streaming data at massive scale. Amazon Kinesis is ideal for Internet of Things (IoT) use cases. It can collect and process hundreds of terabytes of data per hour from hundreds of thousands of sources, allowing you to easily write applications that process information in real-time, from sources such as web site click-streams, Raspberry Pi gadgets, devices, social media, operational logs, metering data and more.

With Amazon Kinesis, you can build real-time dashboards, capture exceptions, execute algorithms, and generate alerts. With point-and-click menus, you can ingest data, query it and then send output to a variety of destinations including but not limited to Amazon S3, Amazon EMR, Amazon DynamoDB, or Amazon Redshift.

Kinesis is powerful, especially if you’re already locked into the AWS platform.  My preference is Apache Kafka, but Kinesis is definitely worth learning about.

Related Posts

Generating Load For Kafka With JMeter

Anup Shirolkar shows us a way to use JMeter to generate load for Apache Kafka clusters: The Anomalia Machina is going to require (at least!) one more thing as stated in the intro, loading with lots of data! Kafka is a log aggregation system and operates on a publish-subscribe mechanism. The Kafka cluster in Anomalia Machina […]

Read More

Data Science And Data Engineering In HDP 3.0

Saumitra Buragohain, et al, show off some of the things added to the Hortonworks Data Platform for data scientists and data engineers: We leverage the power of HDP 3.0 from efficient storage (erasure coding), GPU pooling to containerized TensorFlow and Zeppelin to enable this use case. We will the save the details for a different […]

Read More

Categories

April 2017
MTWTFSS
« Mar May »
 12
3456789
10111213141516
17181920212223
24252627282930