Architecting Kafka Streams

Bill Bejeck walks through a scenario in which one might use Kafka Streams:

Now, you’ve defined your source and we can start creating processors that’ll do the work on the data. The first goal is to mask the credit card numbers recorded in the incoming purchase records. The first processor is used to convert credit card numbers from 1234-5678-9123-2233 to xxxx-xxxx-xxxx-2233. The Stream.mapValues method performs the masking. The KStream.mapValues method returns a new KStream instance that changes the values, as specified by the given ValueMapper, as records flow through the stream. This particular KStream instance is the parent processor for any other processors you define. Our new parent processor provides the masked credit card numbers to any downstream processors with Purchase objects.

Unfortunately, this article seems like a mixture of high-level and low-level information that appeals more to people who already know how Kafka Streams works, but it is nevertheless interesting.

Related Posts

HDP 3.0 Released

Roni Fontaine and Saumitra Buragohain announce Hortonworks Data Platform version 3.0: Other additional capabilities include: Scalability and availability with NameNode federation, allowing customers to scale to thousands of nodes and a billion files. Higher availability with multiple name nodes and standby capabilities allow for the undisrupted, continuous cluster operations if a namenode goes down. Lower […]

Read More

Visualizing Data In Real Time With SQL Server And Dash

Tomaz Kastrun shows how to use Python Dash to visualize data living in SQL Server in real time: The need for visualizing the real-time data (or near-real time) has been and still is a very important daily driver for many businesses. Microsoft SQL Server has many capabilities to visualize streaming data and this time, I […]

Read More

Categories

April 2017
MTWTFSS
« Mar May »
 12
3456789
10111213141516
17181920212223
24252627282930