Scalable Data Analytics

Kevin Feasel

2017-04-03

Cloud, R

David Smith covers a recent Microsoft Data Science team talk at Strata:

The tutorial covers many different techniques for training predictive models at scale, and deploying the trained models as predictive engines within production environments. Among the technologies you’ll use are Microsoft R Server running on Spark, the SparkR package, the sparklyr package and H20 (via the rsparkling package). It also touches on some non-Spark methods, like the bigmemory and ff packages for R (and various other packages that make use of them), and using the foreach package for coarse-grained parallel computations. You’ll also learn how to create prediction engines from these trained models using the mrsdeploy package.

Check out the post as well as the tutorial David links.

Related Posts

Using DALEX To Explain Black-Box Models

Przemyslaw Biecek explains that there’s more than LIME for explaining black-box models: I’ve heard about a number of consulting companies, that decided to use simple linear model instead of a black box model with higher performance, because ,,client wants to understand factors that drive the prediction’’. And usually the discussion goes as following: ,,We have tried LIME […]

Read More

Comparing Keras In Python Versus R

Dmitry Kisler performs image classification using Keras in both Python and R: From the plots above, one can see that: the accuracy of your model doesn’t depend on the language you use to build and train it (the plot shows only train accuracy, but the model doesn’t have high variance and the bias accuracy is […]

Read More

Categories

April 2017
MTWTFSS
« Mar May »
 12
3456789
10111213141516
17181920212223
24252627282930