Kinesis vs SQS

Kevin Sookocheff compares and contrasts Amazon’s Kinesis and SQS offerings:

Complicated Producer and Consumer Libraries

For maximum performance, Kinesis requires deploying producer and consumer libraries alongside your application. As a producer, you deploy a C++ binary with a Java interface for reading and writing data records to a Kinesis stream. As a consumer, you deploy a Java application that can communicate with other programming languages through an interface built on top of standard in and standard out. In either of these cases, adding new producers or consumers to a Kinesis stream presents some investment in development and maintenance.

Click through for the full comparison and figuring out where each fits.

Related Posts

When Not to Use Spark

Ramandeep Kaur gives us several cases when it makes sense not to use Apache Spark: There can be use cases where Spark would be the inevitable choice. Spark considered being an excellent tool for use cases like ETL of a large amount of a dataset, analyzing a large set of data files, Machine learning, and […]

Read More

Hyperparameter Tuning with MLflow

Joseph Bradley shows how you can perform hyperparameter tuning of an MLlib model with MLflow: Apache Spark MLlib users often tune hyperparameters using MLlib’s built-in tools CrossValidator and TrainValidationSplit.  These use grid search to try out a user-specified set of hyperparameter values; see the Spark docs on tuning for more info. Databricks Runtime 5.3 and 5.3 ML and above support […]

Read More

Categories

March 2017
MTWTFSS
« Feb Apr »
 12345
6789101112
13141516171819
20212223242526
2728293031