Serverless Azure

Christos Matskas has an article on Azure Functions, Service Fabric, and Batch:

This service is the hidden gem of HPC (high performance computing) within the Azure Compute service family. As the name implies, Azure Batch is designed to run large-scale and high-performance computing applications efficiently in the cloud. When you’re faced with large workloads, all you have to do is to use Azure Batch to define compute resources to execute your applications in parallel and at the desired scale. A good use-case for Azure Batch would be to perform financial risk modelling, climate data analysis or stress testing. What makes Batch so useful is the fact that you don’t need to manually manage the node cluster, virtual networks or scheduling because all this is handled by the service. You need to define a job, any associated data and the number of nodes you want to utilise. It makes no difference if you need to run on one, a hundred or even thousands of nodes. The service is designed to scale according to the workload needs.

The cheapest server may very well be no server, and we’re at the point where relatively simple services could just run as Azure Functions or AWS Lambda functions.

Related Posts

Kafka And The Differing Aims Of Data Professionals

Kai Waehner argues that there is an impedence mismatch between data engineers, data scientists, and ML production engineers: Data scientists love Python, period. Therefore, the majority of machine learning/deep learning frameworks focus on Python APIs. Both the stablest and most cutting edge APIs, as well as the majority of examples and tutorials use Python APIs. […]

Read More

Saving An ADF Pipeline As A Template

Rayis Imayev shares with us how you can save an Azure Data Factory pipeline as a template: Azure Data Factory (ADF) provides you with a framework for creating data transformation solutions in the Microsoft cloud environment. Recently introduced Template Gallery for ADF pipelines can speed up this development process and provide you with helpful information to create additional activity […]

Read More

Categories

February 2017
MTWTFSS
« Jan Mar »
 12345
6789101112
13141516171819
20212223242526
2728