Handwriting Character Recognition

Tomaz Kastrun compares a few different libraries in terms of handwritten numeric character recognition:

Recently, I did a session at local user group in Ljubljana, Slovenija, where I introduced the new algorithms that are available with MicrosoftML package for Microsoft R Server 9.0.3.

For dataset, I have used two from (still currently) running sessions from Kaggle. In the last part, I did image detection and prediction of MNIST dataset and compared the performance and accuracy between.

MNIST Handwritten digit database is available here.

Tomaz has all of the code available as well.

Related Posts

Python versus R (Again)

Alex Woodie looks at whether Python is dominating R in the data science space: There is some evidence that Python’s popularity is hurting R usage. According to the TIOBE Index, Python is currently the third most popular language in the world, behind perennial heavyweights Java and C. From August 2018 to August 2019, Python usage surged […]

Read More

Local Randomness and R

Evgeni Chasnovski has a problem around generating random data: Let’s say we have a deterministic (non-random) problem for which one of the solutions involves randomness. One very common example of such problem is a function minimization on certain interval: it can be solved non-randomly (like in most methods of optim()), or randomly (the simplest approach being […]

Read More

Categories

February 2017
MTWTFSS
« Jan Mar »
 12345
6789101112
13141516171819
20212223242526
2728