Market Basket Analysis Basics

Kevin Feasel

2017-02-21

R

Leila Etaati has an introduction to market basket analysis with R:

For instance, imagine we have below transaction items from a shopping store  for last hours,

Customer 1: Salt, pepper, Blue cheese

Customer 2: Blue Cheese, Pasta, Pepper, tomato sauce

Customer 3: Salt, Blue Cheese, Pepperoni, Bacon, egg

Customer 4: water, Pepper, Egg, Salt

we want to know how many times customer purchase pepper and salt together
the support will be : from out four main transactions (4 customers), 2 of them purchased salt and pepper together. so the support will be 2 divided by 4 (all number of transaction.

Basket analysis is one way of building a recommendation engine:  if you’re buying butter, cream, and eggs, do you also want to buy sugar?

Related Posts

Using Cohen’s D for Experiments

Nina Zumel takes us through Cohen’s D, a useful tool for determining effect sizes in experiments: Cohen’s d is a measure of effect size for the difference of two means that takes the variance of the population into account. It’s defined asd = | μ1 – μ2 | / σpooledwhere σpooled is the pooled standard deviation over both cohorts. […]

Read More

Comparing Iterator Performance in R

Ulrik Stervbo has a performance comparison for for, apply, and map functions in R: It is usually said, that for– and while-loops should be avoided in R. I was curious about just how the different alternatives compare in terms of speed. The first loop is perhaps the worst I can think of – the return vector is […]

Read More

Categories

February 2017
MTWTFSS
« Jan Mar »
 12345
6789101112
13141516171819
20212223242526
2728