Twitter Sentiment Analysis Using doc2vec

Sergey Bryl uses word2vec and doc2vec to perform Twitter sentiment analysis in R:

But doc2vec is a deep learning algorithm that draws context from phrases. It’s currently one of the best ways of sentiment classification for movie reviews. You can use the following method to analyze feedbacks, reviews, comments, and so on. And you can expect better results comparing to tweets analysis because they usually include lots of misspelling.

We’ll use tweets for this example because it’s pretty easy to get them via Twitter API. We only need to create an app on https://dev.twitter.com (My apps menu) and find an API Key, API secret, Access Token and Access Token Secret on Keys and Access Tokens menu tab.

Click through for more details, including code samples.

Related Posts

The Lesser-Known Apply Functions In R

Andrew Treadway covers a few of the lesser-known apply functions in R: rapply Let’s start with rapply. This function has a couple of different purposes. One is to recursively apply a function to a list. We’ll get to that in a moment. The other use of rapply is to a apply a function to only those elements in […]

Read More

Controlling Azure Services In R With AzureR

Hong Ooi announces a new set of packages called AzureR: As background, some of you may remember the AzureSMR package, which was written a few years back as an R interface to Azure. AzureSMR was very successful and gained a significant number of users, but it was never meant to be maintainable in the long term. As […]

Read More

Categories

February 2017
MTWTFSS
« Jan Mar »
 12345
6789101112
13141516171819
20212223242526
2728