Twitter Sentiment Analysis Using doc2vec

Sergey Bryl uses word2vec and doc2vec to perform Twitter sentiment analysis in R:

But doc2vec is a deep learning algorithm that draws context from phrases. It’s currently one of the best ways of sentiment classification for movie reviews. You can use the following method to analyze feedbacks, reviews, comments, and so on. And you can expect better results comparing to tweets analysis because they usually include lots of misspelling.

We’ll use tweets for this example because it’s pretty easy to get them via Twitter API. We only need to create an app on https://dev.twitter.com (My apps menu) and find an API Key, API secret, Access Token and Access Token Secret on Keys and Access Tokens menu tab.

Click through for more details, including code samples.

Related Posts

The Basics Of PCA In R

Prashant Shekhar gives us an overview of Principal Component Analysis using R: PCA changes the axis towards the direction of maximum variance and then takes projection on this new axis. The direction of maximum variance is represented by Principal Components (PC1). There are multiple principal components depending on the number of dimensions (features) in the […]

Read More

Tidy Data Is Normalized Data

I emphasize the link between a tidy dataframe and a normalized data structure: The kicker, as Wickham describes on pages 4-5, is that normalization is a critical part of tidying data.  Specifically, Wickham argues that tidy data should achieve third normal form. Now, in practice, Wickham argues, we tend to need to denormalize data because […]

Read More

Categories

February 2017
MTWTFSS
« Jan Mar »
 12345
6789101112
13141516171819
20212223242526
2728