Memory-Optimized Table Warnings

Robert Davis looks at messages in the error log related to memory-optimized tables:

The server on which we are running in-memory OLTP is a really hefty server with 128 logical cores and 1.5 TB of RAM (1.4 TB allocated to SQL Server). We are limiting in-memory’s memory usage with Resource Governor, which also makes it easy to see how much it is using. Needless to say, even with a limited percentage of 1.4 TB of RAM is still a lot of memory. The highest I have seen in-memory usage for this one database reach at peak activity levels is ~43 GB. In production, when the heavy in-memory OLTP processes complete, I see the system reclaim the in-memory buffers pretty quickly, though not completely. During a normal day, I often see the in-memory memory usage hovering between 1 and 3 GB even when there is virtually no traffic.

When testing in-memory on a dev server that only I was using before deploying to production, I noticed that the memory usage would stay at whatever high level it reached. This makes me believe that in-memory buffers are cleaned up and reclaimed as needed, and if not needed, they just hang around as in-memory buffers. And it appears that some of the buffers end up hanging around. Perhaps they wouldn’t if the server was memory starved. I have not tested that theory.

It’s a conjecture, but seems pretty solid.  Also worth reiterating is that they’re warnings, not errors.

Related Posts

Digging Into The In-Memory Columnstore Location

Niko Neugebauer does some investigation into where, exactly, memory-optimized columnstore data goes: This is a rather simple blog post that is dedicated to the theme of the In-Memory Columnstore Indexes location. This has been a constant topic of discussion over a long period of time, even during the public events – and there is a […]

Read More

Logs Are For Parsing

Tim Wilde shares an oft-forgotten truth: How often have you found yourself contemplating some hair-brained regex scheme in order to extract an inkling of value from a string and wishing the data had just arrived in a well-structured package without all the textual fluff? So why do we insist on writing prose in our logs? […]

Read More


January 2017
« Dec Feb »