Principal Component Analysis Using R

Francisco Lima explains what principal component analysis is and shows how to do it in R:

Three lines of code and we see a clear separation among grape vine cultivars. In addition, the data points are evenly scattered over relatively narrow ranges in both PCs. We could next investigate which parameters contribute the most to this separation and how much variance is explained by each PC, but I will leave it for pcaMethods. We will now repeat the procedure after introducing an outlier in place of the 10th observation.

PCA is extremely useful when you have dozens of contributing factors, as it lets you narrow in on the big contributors quickly.

Related Posts

AzureR Packages In Cran

David Smith points out that the Azure packages for R are now in CRAN: The suite of AzureR packages for interfacing with Azure services from R is now available on CRAN. If you missed the earlier announcements, this means you can now use the install.packages function in R to install these packages, rather than having to install from the […]

Read More

Solving Naive Bayes By Hand

I have a post that requires math and is meaner toward the Buffalo Bills than I normally am: Trust the ProcessThere are three steps to the process of solving the simplest of Naive Bayes algorithms. They are:1. Find the probability of winning a game (that is, our prior probability).2. Find the probability of winning given each input variable: whether Josh Allen starts the game, whether the team is […]

Read More

Categories

January 2017
MTWTFSS
« Dec Feb »
 1
2345678
9101112131415
16171819202122
23242526272829
3031