Thinking About Real-Time Analytics

Martin Willcox offers some advice for people getting into the real-time analytics game:

  1. Clarify who will be making the decision – man, or machine? Humans have powers of discretion that machines sometimes lack, but are much slower than a silicon-based system, and only able to make decisions one-at-a-time, one-after-another.  If we chose to put a human in the loop, we are normally in “please-update-my-dashboard-faster-and-more-often” territory.

  2. It is important to be clear about decision-latency. Think about how soon after a business event you need to take a decision and then implement it. You also need to understand whether decision-latency and data-latency are the same. Sometimes a good decision can be made now on the basis of older data. But sometimes you need the latest, greatest and most up-to-date information to make the right choices.

There are some good insights here.

Related Posts

Where Machine Learning And Econometrics Collide

Dave Giles shares some thoughts on how machine learning and econometrics relate: What is Machine Learning (ML), and how does it differ from Statistics (and hence, implicitly, from Econometrics)? Those are big questions, but I think that they’re ones that econometricians should be thinking about. And if I were starting out in Econometrics today, I’d […]

Read More

Solving Naive Bayes By Hand

I have a post that requires math and is meaner toward the Buffalo Bills than I normally am: Trust the ProcessThere are three steps to the process of solving the simplest of Naive Bayes algorithms. They are:1. Find the probability of winning a game (that is, our prior probability).2. Find the probability of winning given each input variable: whether Josh Allen starts the game, whether the team is […]

Read More


January 2017
« Dec Feb »