Thinking About Real-Time Analytics

Martin Willcox offers some advice for people getting into the real-time analytics game:

  1. Clarify who will be making the decision – man, or machine? Humans have powers of discretion that machines sometimes lack, but are much slower than a silicon-based system, and only able to make decisions one-at-a-time, one-after-another.  If we chose to put a human in the loop, we are normally in “please-update-my-dashboard-faster-and-more-often” territory.

  2. It is important to be clear about decision-latency. Think about how soon after a business event you need to take a decision and then implement it. You also need to understand whether decision-latency and data-latency are the same. Sometimes a good decision can be made now on the basis of older data. But sometimes you need the latest, greatest and most up-to-date information to make the right choices.

There are some good insights here.

Related Posts

Testing Spatial Equilibrium Concepts With tidycensus

Ignacio Sarmiento Barbieri walks us through the concept of spatial equilibrium and tests using data from the tidycensus package: Let’s take the model to the data and reproduce figures 2.1. and 2.2 of “Cities, Agglomeration, and Spatial Equilibrium”. The focus are two cities, Chicago and Boston. These cities are chosen because both differ in how easy […]

Read More

Interacting With SQL Server From Pandas

Tomaz Kastrun shows how to use pyodbc to interact with a SQL Server database from Pandas: In the SQL Server Management Studio (SSMS), the ease of using external procedure sp_execute_external_script has been (and still will be) discussed many times. But the reason for this short blog post is the fact that, changing Python environments using Conda package/module management within Microsoft […]

Read More

Categories

January 2017
MTWTFSS
« Dec Feb »
 1
2345678
9101112131415
16171819202122
23242526272829
3031