Support Vector Machines In R

Deepanshu Bhalla explains what support vector machines are:

The main idea of support vector machine is to find the optimal hyperplane (line in 2D, plane in 3D and hyperplane in more than 3 dimensions) which maximizes the margin between two classes. In this case, two classes are red and blue balls. In layman’s term, it is finding the optimal separating boundary to separate two classes (events and non-events).

Deepanshu then goes on to implement this in R.

Related Posts

Using Plotly In Power BI

Kara Annanie shows how you can R integration in Power BI to push Plotly visuals to users: In the example, above, we’ve created a line chart visualization using Plotly and we’ve decided to put labels on the graph, but only on the first and last points of the line graph. This graph would be particularly […]

Read More

P-Hacking and Multiple Comparison Bias

Patrick David has a great article on hypothesis testing, p-hacking, and multiple comparison bias: The most important part of hypothesis testing is being clear what question we are trying to answer. In our case we are asking:“Could the most extreme value happen by chance?”The most extreme value we define as the greatest absolute AMVR deviation from […]

Read More


January 2017
« Dec Feb »