Data Analysis Basics In R

Sibanjan Das provides some of the basics of data analysis using R:

Let’s start thinking in a logical way the steps that one should perform once we have the data imported into R.

  • The first step would be to discover what’s in the data file that was exported. To do this, we can:
    • Use head function to view few rows from the data set. By default, head shows first 5 rows. Ex: head(mtcars)
    • str to view the structure of the imported data. Ex: str(mtcars)
    • summary to view the data summary. Ex: summary(mtcars) 

There’s a lot to data analysis, but this is a good start.

Related Posts

Testing Spatial Equilibrium Concepts With tidycensus

Ignacio Sarmiento Barbieri walks us through the concept of spatial equilibrium and tests using data from the tidycensus package: Let’s take the model to the data and reproduce figures 2.1. and 2.2 of “Cities, Agglomeration, and Spatial Equilibrium”. The focus are two cities, Chicago and Boston. These cities are chosen because both differ in how easy […]

Read More

Interacting With SQL Server From Pandas

Tomaz Kastrun shows how to use pyodbc to interact with a SQL Server database from Pandas: In the SQL Server Management Studio (SSMS), the ease of using external procedure sp_execute_external_script has been (and still will be) discussed many times. But the reason for this short blog post is the fact that, changing Python environments using Conda package/module management within Microsoft […]

Read More

Categories

January 2017
MTWTFSS
« Dec Feb »
 1
2345678
9101112131415
16171819202122
23242526272829
3031