Word Count In Spark 2.0

Kevin Feasel



Anubhav Tarar has a word count app for Spark 2.0:

Now you have to perform the given steps:

  • Create a spark session from org.apache.spark.sql.sparksession api and specify your master and app name

  • Using the sparksession.read.txt method, read from the file wordcount.txt the return value of this method in a dataset. In case you don’t know what a data set looks like you can learn from this link.

  • Split this dataset of type string with white space and create a map which contains the occurence of each word in that data set.

  • Create a class prettyPrintMap for printing the result to console.

This Hello World app is a bit longer than the sheer minimum code necessary, as it includes a class for formatting results and some error handling.

Related Posts

Apache Spark 2.3

The Databricks team has been busy.  They’ve recently announced Apache Spark 2.3 on Databricks: Continuing with the objectives to make Spark faster, easier, and smarter, Spark 2.3 marks a major milestone for Structured Streaming by introducing low-latency continuous processing and stream-to-stream joins; boosts PySpark by improving performance with pandas UDFs; and runs on Kubernetes clusters […]

Read More

Using Kafka And Elasticsearch For IoT Data

Angelos Petheriotis talks about building an IoT structure which handles ten billion messages per day: We splitted the pipeline into 2 main units: The aggregator job and the persisting job. The aggregator has one and only one responsibility. To read from the input kafka topic, process the messages and finally emit them to a new […]

Read More


January 2017
« Dec Feb »