Getting Finer-Grained Security In Spark

Vadim Vaks explains how to get finer-grained permissions within Spark using Ranger and LLAP:

With LLAP enabled, Spark reads from HDFS go directly through LLAP. Besides conferring all of the aforementioned benefits on Spark, LLAP is also a natural place to enforce fine grain security policies. The only other capability required is a centralized authorization system. This need is met by Apache Ranger. Apache Ranger provides centralized authorization and audit services for many components that run on Yarn or rely on data from HDFS. Ranger allows authoring of security policies for: – HDFS – Yarn – Hive (Spark with LLAP) – HBase – Kafka – Storm – Solr – Atlas – Knox Each of the above services integrate with Ranger via a plugin that pulls the latest security policies, caches them, and then applies them at run time.

Read on for more details.

Related Posts

Azure Databricks And Active Directory

Tristan Robinson wraps up a two-parter on Azure Databricks security: With the addition of Databricks runtime 5.1 which was released December 2018, comes the ability to use Azure AD credential pass-through. This is a huge step forward since there is no longer a need to control user permissions through Databricks Groups / Bash and then […]

Read More

Azure Databricks Security

Tristan Robinson looks at what’s currently available in terms of security on Azure Databricks: You’ll notice that as part of this I’m retrieving the secrets/GUIDS I need for the connection from somewhere else – namely the Databricks-backed secrets store. This avoids exposing those secrets in plain text in your notebook – again this would not […]

Read More

Categories

December 2016
MTWTFSS
« Nov Jan »
 1234
567891011
12131415161718
19202122232425
262728293031