Spark Versus Flink

Sibanjan Das compares Apache Flink to Apache Spark:

The primitive concept of Apache Flink is the high-throughput and low-latency stream processing framework which also supports batch processing. The architecture is a flip of the other Big Data processing architectures where the primary notion was the batch processing framework. This is something that organizations have been looking for over the last decade. There is a need for platforms supporting low latency data movement for applications where even a millisecond delay can lead to severe consequences. The prospect of Apache Flink seems to be significant and looks like the goal for stream processing.

While comparing these two, don’t forget about Kafka Streams.  We’ve entered the streaming era for Hadoop & friends, and it’s an exciting time.

Related Posts

Event Sourcing On Kafka

Adam Warski shows how you can use Apache Kafka as your event sourcing data source: There’s a number of great introductory articles, so this is going to be a very brief introduction. With event sourcing, instead of storing the “current” state of the entities that are used in our system, we store a stream of events that relate to these […]

Read More

The Basics Of Kafka Security

Stephane Maarek has a nice post covering some of the basics of securing an Apache Kafka cluster: Once your Kafka clients are authenticated, Kafka needs to be able to decide what they can and cannot do. This is where Authorization comes in, controlled by Access Control Lists (ACL). ACL are what you expect them to be: […]

Read More


December 2016
« Nov Jan »