Understanding Naive Bayes

Ahmet Taspinar explains the Naive Bayes classificiation algorithm and writes Python code to implement it:

Within Machine Learning many tasks are – or can be reformulated as – classification tasks.

In classification tasks we are trying to produce a model which can give the correlation between the input data $X$ and the class $C$ each input belongs to. This model is formed with the feature-values of the input-data. For example, the dataset contains datapoints belonging to the classes ApplesPears and Oranges and based on the features of the datapoints (weight, color, size etc) we are trying to predict the class.

Ahmet has his entire post saved as a Jupyter notebook.

Related Posts

Sentiment Analysis with Python

Bruno Stecanella shows us how to use MonkeyLearn to perform sentiment analysis in Python: Sentiment analysis is a set of Natural Language Processing (NLP) techniques that takes a text (in more academic circles, a document) written in natural language and extracts the opinions present in the text. In a more practical sense, our objective here is to take a text […]

Read More

Scalable Anomaly Detection with Kafka and Cassandra

Paul Brebner wraps up a series on anomaly detection at scale: The complete machine for the biggest result (48 Cassandra nodes) has 574 cores in total.  This is a lot of cores! Managing the provisioning and monitoring of this sized system by hand would be an enormous effort. With the combination of the Instaclustr managed […]

Read More


December 2016
« Nov Jan »