ETL With Spark

Eric Maynard demonstrates that moving data across Hadoop clusters can be sped up by using Spark:

By leveraging Spark for distribution, we can achieve the same results much more quickly and with the same amount of code. By keeping data in HDFS throughout the process, we were able to ingest the same data as before in about 36 seconds. Let’s take a look at Spark code which produced equivalent results as the bash script shown above — note that a more parameterized version of this code code and of all code referenced in this article can be found down below in the Resources section.

Read the whole thing.

Related Posts

Overriding Spark Dependencies

Landon Robinson shows how to override a Spark dependency located on the classpath: This doesn’t draw the line exactly where the method changed from private to public, but generally speaking:– gson-2.2.4.jar: the method is private, and therefore too old for use here– gson-2.6.1: the method is public, and works fine.– Somewhere between the two, the […]

Read More

Kafka and MirrorMaker

Renu Tewari describes what MirrorMaker does for Kafka today and what is coming with version 2: Apache Kafka has become an essential component of enterprise data pipelines and is used for tracking clickstream event data, collecting logs, gathering metrics, and being the enterprise data bus in a microservices based architectures. Kafka is essentially a highly […]

Read More

Categories

December 2016
MTWTFSS
« Nov Jan »
 1234
567891011
12131415161718
19202122232425
262728293031