ETL With Spark

Eric Maynard demonstrates that moving data across Hadoop clusters can be sped up by using Spark:

By leveraging Spark for distribution, we can achieve the same results much more quickly and with the same amount of code. By keeping data in HDFS throughout the process, we were able to ingest the same data as before in about 36 seconds. Let’s take a look at Spark code which produced equivalent results as the bash script shown above — note that a more parameterized version of this code code and of all code referenced in this article can be found down below in the Resources section.

Read the whole thing.

Related Posts

Kafka 2.3 and Kafka Connect Improvements

Robin Moffatt goes over improvements in Kafka Connect with the release of Apache Kafka 2.3: A Kafka Connect cluster is made up of one or more worker processes, and the cluster distributes the work of connectors as tasks. When a connector or worker is added or removed, Kafka Connect will attempt to rebalance these tasks. Before version 2.3 of Kafka, […]

Read More

The Databricks File System

Brad Llewellyn takes us through the Azure Databricks File System: Today, we’re going to talk about the Databricks File System (DBFS) in Azure Databricks.  If you haven’t read the previous posts in this series, Introduction, Cluster Creation and Notebooks, they may provide some useful context.  You can find the files from this post in our GitHub Repository.  Let’s move on […]

Read More

Categories

December 2016
MTWTFSS
« Nov Jan »
 1234
567891011
12131415161718
19202122232425
262728293031