Elasticsearch 5.0

Itamar Syn-hershko looks at the new functionality in the latest version of Elasticsearch:

One fundamental feature of Elasticsearch is scoring – or results ranking by relevance. The part that handles it is a Lucene component called Similarity. ES 5.0 now makes Okapi BM25 the default similarity and that’s quite an important change. The default has long been tf/idf, which is both simpler to understand but easier to be fooled by rogue results. BM25 is a probabalistic approach to ranking that almost always gives better results than the more vanilla tf/idf. I’ve been recommending customers to use BM25 over tf/idf for a long time now, and we also rely on it at Forter for doing quite a lot of interesting stuff. Overall, a good move by ES and I can finally archive a year’s long advise. Britta Weber has a great talk on explaining the difference, and BM25 in particular, definitely a recommended watch.

This is one of several search-related features in the latest version.  Looks like a solid release.

Related Posts

Dropping Columns With Logstash

Mike Hillwig shows how to ignore columns with Logstash: Like I said earlier, we have some data that I know I’ll never use. This is flight performance data. The dataset contains diversion information. If a flight gets diverted more than once, it’s tracked here. I don’t care about that, so I’m dropping the diversion information […]

Read More

Using Kafka And Elasticsearch For IoT Data

Angelos Petheriotis talks about building an IoT structure which handles ten billion messages per day: We splitted the pipeline into 2 main units: The aggregator job and the persisting job. The aggregator has one and only one responsibility. To read from the input kafka topic, process the messages and finally emit them to a new […]

Read More


November 2016
« Oct Dec »