SKLearn To Azure ML

David Crook shows how to build a model using Python’s SciKit library and then operationalize it in Azure ML:

Why Model Outside Azure ML?

Sometimes you run into things like various limitations, speed, data size or perhaps you just iterate better on your own workstation.  I find myself significantly faster on my workstation or in a jupyter notebook that lives on a big ol’ server doing my experiments.  Modelling outside Azure ML allows me to use the full capabilities of whatever infrastructure and framework I want for training.

So Why Operationalize with Azure ML?

AzureML has several benefits such as auto-scale, token generation, high speed python execution modules, api versioning, sharing, tight PaaS integration with things like Stream Analytics among many other things.  This really does make life easier for me.  Sure I can deploy a flask app via docker somewhere, but then, I need to worry about things like load balancing, and then security and I really just don’t want to do that.  I want to build a model, deploy it, and move to the next one.  My value is A.I. not web management, so the more time I spend delivering my value, the more impactful I can be.

Read the whole thing.

Related Posts

Azure Data Lake Store Gen2

James Serra gives us the low-down on Azure Data Lake Store Gen2 now that it is generally available: When to use Blob vs ADLS Gen2New analytics projects should use ADLS Gen2, and current Blob storage should be converted to ADLS Gen2, unless these are non-analytical use cases that only need object storage rather than hierarchical storage […]

Read More

Using Convolutional Neural Networks To Recognize Features In Images

Michael Grogan shows how you can use Keras to perform image recognition with a convolutional neural network: VGG16 is a built-in neural network in Keras that is pre-trained for image recognition. Technically, it is possible to gather training and test data independently to build the classifier. However, this would necessitate at least 1,000 images, with […]

Read More

Categories

October 2016
MTWTFSS
« Sep Nov »
 12
3456789
10111213141516
17181920212223
24252627282930
31