Koos van Strien moves from Python to R to run an xgboost algorithm:

Note that the parameters of xgboost used here fall in three categories:

  • General parameters

    • nthread (number of threads used, here 8 = the number of cores in my laptop)
  • Booster parameters

    • max.depth (of tree)
    • eta
  • Learning task parameters

    • objective: type of learning task (softmax for multiclass classification)
    • num_class: needed for the “softmax” algorithm: how many classes to predict?
  • Command Line Parameters

    • nround: number of rounds for boosting

Read the whole thing.

Related Posts

Image Counts For Neural Network Training

Pete Warden shares his rule of thumb for how many images you need to train a neural network: In the early days I would reply with the technically most correct, but also useless answer of “it depends”, but over the last couple of years I’ve realized that just having a very approximate rule of thumb […]

Read More

An Introduction To seplyr

John Mount guest blogs on the Revolutions blog about seplyr: seplyr is an R package that supplies improved standard evaluation interfaces for many common data wrangling tasks. The core of seplyr is a re-skinning of dplyr‘s functionality to seplyr conventions (similar to how stringr re-skins the implementing package stringi). Read on for a couple of examples of where seplyr can make it easier for you to […]

Read More


September 2016
« Aug Oct »