Levenshtein Distances

Peter Coates provides an extremely fast estimate of Levenshtein Distance:

If your application requires a precise LD value, this heuristic isn’t for you, but the estimates are typically within about 0.05 of the true distance, which is more than enough accuracy for such tasks as:

  • Confirming suspected near-duplication.

  • Estimating how much two document vary.

  • Filtering through large numbers of documents to look for a near-match to some substantial block of text.

The estimation process is pretty interesting.  Worth a read.

Related Posts

Multi-Threaded R With Microsoft R Client

David Parr shows us how to get started with Microsoft R Client and performs some quick benchmarking: This message will pop up, and it’s worth noting as it’s got some information in it that you might need to think about: It’s worth noting that right now Microsoft r Client is lagging behind the current R version, and […]

Read More

Image Clustering With Keras And R

Shirin Glander shows us how to use R to extract learned features from Keras and cluster those features: For each of these images, I am running the predict() function of Keras with the VGG16 model. Because I excluded the last layers of the model, this function will not actually return any class predictions as it would normally […]

Read More

Categories

September 2016
MTWTFSS
« Aug Oct »
 1234
567891011
12131415161718
19202122232425
2627282930